قدس آنلاین: هوش مصنوعی در سالهای اخیر وجههی بدی پیدا کرده بود؛ اما دنیاگیری کووید ۱۹ ثابت کرد این فناوری میتواند در جستوجو برای واکسن این بیماری مفید واقع شود. هوش مصنوعی در این جستوجو، دو نقش عمده ایفا میکند: نمایش مؤلفههای واکسن از طریق درک ساختارهای پروتئینی ویروس و کمک به پژوهشگران برای جستوجوی دهها هزار مقاله مرتبط با سرعتی بیسابقه. در طول هفتههای گذشته، تیمهای مؤسسهی هوش مصنوعی آلن، دیپ مایند گوگل و دیگر شرکتها، دست به تولید ابزارهای AI، مجموعه دادههای اشتراکی و نتایج پژوهشی زدند و این نتایج را بهصورت رایگان در اختیار جامعهی جهانی علم قرار دادند.
واکسنها با شبیهسازی عفونت، به تولید گلبولهای سفید دفاعی و آنتیژنها منجر میشوند. بهطور کلی سه نوع واکسن وجود دارد: واکسنهای تمام پاتوژن، مانند واکسن آنفولانزا یا MMR. این واکسنها از پاتوژنهای ضعیف یا مرده برای تحریک واکنش ایمنی استفاده میکنند؛ واکسنهای زیرواحد یا ساب یونیت (مانند سیاهسرفه، زونا) تنها از بخشی از میکروب مثل پروتئین استفاده میکنند؛ و در آخر واکسنهای نوکلیک اسید که مواد ژنتیکی پاتوژن را برای تحریک سیستم ایمنی به سلولهای انسان وارد میکنند. آزمایشهای واکسن نوکلئیک اسید برای کووید ۱۹ در ایالات متحده آغاز شده است. از هوش مصنوعی میتوان برای تسریع توسعهی واکسنهای نوکلئیک اسید و ساب یونیت استفاده کرد.
پروتئینها، بخش مهمی از ویروسها هستند که از توالیهای آمینواسیدی شکل گرفتهاند. این توالیها شکل سهبعدی منحصربه فردی دارند. درک ساختار پروتئینها برای درک عملکرد آنها ضروری است. دانشمندان با درک شکل پروتئینها میتوانند به تولید داروی سازگار با شکل منحصربهفرد پروتئینها بپردازند؛ اما برای آزمایش تمام شکلهای احتمالی پروتئین و رسیدن به ساختار سهبعدی منحصربهفرد، زمان زیادی لازم است. اینجا است که هوش مصنوعی به کمک میآید . در عین حال پژوهشگران دانشگاه تگزاس و مؤسسه بهداشت ملی از روشی محبوب برای ساخت اولین نقشهی سهبعدی مقیاس اتمی از بخشی از ویروس استفاده میکنند که به سلولهای انسان میچسبد و آنها را آلوده میکند. پژوهشگران این بررسی، سالها روی دیگر کروناویروسهایی مثل سارس و مرس کار کردهاند. از طرفی آلفافولد هم موفق به ارائهی پیشبینی دقیقی برای این ساختار پروتئینی میخی شد.
همچنین پژوهشگران مؤسسهی طراحی پروتئین دانشگاه واشنگتن از مدلهای کامپیوتری برای توسعهی مدلهای سهبعدی مقیاس اتمی پروتئین میخی سارس استفاده کردند. این مدلها منطبق با کشفیات آزمایشگاه UT Austin بودند. این تیم حالا با ساخت پروتئینهای جدیدتری برای تغذیهی ویروس کرونا، در حال توسعهی این پروژه هستند. از نظر تئوری، این پروتئینها به پروتئینهای میخی میچسبند و نمیگذارند ذرات ویروسی، سلولهای سالم را آلوده کنند.علاوه بر تمام موارد فوق، پژوهشهای متمرکز بر کووید ۱۹ باید در سراسر جهان با یکدیگر یکپارچه شوند. یادگیری دربارهی پروژهی آزمایشگاهی دیگر میتواند ماهها یا حتی سالها دانشمندان را جلو بیندازد و به این ترتیب با ارائهی میانبر، از اختراع دوبارهی چرخ جلوگیری شود. آزمایشگاهها معمولا پروژهی خود را از طریق مقالهها یا سرویسهای پیش انتشاری مثل bioRxiv و medRxiv منتشر میکنند.امیدوارکنندهترین جنبهی تحلیلهای خودکار برای پژوهشهای علمی این است که هوش مصنوعی نقاط بین پژوهشها را برای شناسایی فرضیهها و نمایش آزمایشها و حتی درمانهای مرتبط به یکدیگر وصل میکند. برای اولینبار دان آ اسوانسون، اکتشاف مبتنی بر پژوهش را معرفی کرد. سیستم خودکار اسوانسون، موفق به کشف درمان جدید منیزیم برای بیماری میگرن شد. کار روی اکتشافات مبتنی بر پژوهش از آن زمان ادامه یافت و تأثیر بالقوهی آن با معرفی ابزارهای NLP یادگیری عمیق مانند SciBert افزایش یافت.
هوش مصنوعی با افزایش سرعت دسترسی به پژوهشها، سرعت کشف واکسن را بالا میبرد . ضمن اینکه هوش مصنوعی علاوه بر پشتیبانی از تلاشهای جامعهی علمی برای درک ویروس و توسعهی درمان، از روز اول شیوع کووید ۱۹ نقشی حیاتی را ایفا کرده است. استارتاپ هوش مصنوعی Bluedot در اواخر دسامبر موفق به کشف دستهای از نمونههای عجیب التهاب ریه در ووهان شد و بهصورت دقیق موقعیتهای گسترش ویروس را پیشبینی کرد. رباتها هم با ضدعفونی اتاقهای بیمارستان، انتقال غذا و تجهیزات و همچنین ارائهی مشاورهی پزشکی از راه دور، تماسهای انسانی را به حداقل رساندهاند. از هوش مصنوعی همچنین برای ردیابی آنی نقشهی گسترش ویروس، تشخیص آلودگی، پیشبینی ریسک مرگومیر و بسیاری از موارد دیگر استفاده شد. درنتیجه نمیتوان پتانسیل آیندهی این فناوری را نادیده گرفت.
انتهای پیام/
نظر شما